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Abstract 
From its inception in 2004, the DETER testbed 

facility has provided effective, dedicated experimental 
resources and expertise to a broad range of academic, 
industrial and government researchers. Now, building 
on knowledge gained, the DETER developers and 
community are moving beyond the classic “testbed” 
model and towards the creation and deployment of 
fundamentally transformational cybersecurity research 
methodologies. This paper discusses underlying 
rationale, together with initial design and 
implementation, of key technical concepts that drive 
these transformations. 

1. Introduction 
The DETER cybersecurity testbed [3] is a dedicated 
network testbed facility customized for cybersecurity 
research. Initally deployed in 2004, DETER’s first 
accomplishment was to provide effective, 
professionally managed research infrastructure and a 
shared user community for leading academic and 
industrial cybersecurity researchers. With this first 
objective largely met, and building on knowledge 
gained, the DETER team now aims to identify, 
understand, and enable new, fundamentally 
transformative, rigorous and scientific methodologies 
for cybersecurity research and development. This paper 
describes key technical contributions of our current and 
ongoing work in support of these goals. 

Effective cybersecurity experiments are challenging to 
today’s network testbeds for a number of reasons. 
Among these are  

• Scale. Experiments that involve complicated 
composite behaviors, rare event detection or 

emergent effects may need to be quite large and 
complex to be accurate or indicative.  

• Multi-party nature. Most interesting cybersecurity 
experiments involve more than one logical or 
physical party, due to the adversarial nature of the 
problem as well as the distributed, decentralized 
nature of the networked systems environment.  

• Risk. Cybersecurity experiments by their 
fundamental nature may involve significant risk if 
not properly contained and controlled. At the same 
time, these experiments may well require some 
degree of interaction with the larger world to be 
useful.  

Meeting these challenges requires both 
transformational advance in capability and 
transformational advance in usability of the underlying 
research infrastructure. A truly large experiment cannot 
be carried out unless the researcher has access to a 
truly large facility, but is also unlikely to be successful 
if the researcher has to create a twenty thousand node 
experiment description by hand. A potentially risky 
experiment is likely to take place only if the 
experimental platform can control the risk and all 
concerned can be sure it is doing so. A multi-party 
experiment will best be supported if the experiment 
control framework explicitly accommodates multiple 
parties and their concerns.  

This paper describes a suite of significant advances to 
today’s state of the testbed art, which taken together 
move the concept of “testbed” from simple hardware 
infrastructure to powerful and effective user-oriented 
research support facility. Central to the paper is our 
work in three synergistic areas:  

First, our unique model for risky experiment 
management enables researchers to carry out 
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experiments that interact with their larger environment 
while retaining both control and safety. The key benefit 
of this model is that both experimenter and testbed 
operator can proceed with assurance in carrying out a 
wide and interesting range of heretofore unsupportable 
experiments.  

Second, our model and structure for experiment health 
monitoring ensures that the underlying conditions and 
invariants required for an experiment to be valid do in 
fact hold. The key benefit of this structure is that 
experiments receive active support from the facility to 
ensure that they are proceeding as the designer 
intended.  

Third, our model and mechanism for dynamic 
federation allows different testbed facilities to come 
together on demand to support large-scale, complex, 
heterogeneous, multi-party experiments. The key 
benefit of this work is that experimenters ranging from 
lone individuals to large institutions can bring together 
rich coalitions of otherwise unavailable resources and 
unconnected communities, all within our larger context 
of complex, yet safely and reliably executed, risky 
experiments.  

When considered together, these capabilities allow the 
cybersecurity researcher to carry out experiments that 
are, simultaneously, more useful, more reliable, and 
more complex, scalable, and realistic than anything 
possible in today’s testbed environment.  

To integrate these capabilities into a coherent and 
easily accessible facility, we develop new abstractions 
and functions for our experiment control toolkit, 
known as SEER [1]. With these new capabilities in 
place SEER will allow users of widely varying 
sophistication to easily and effectively make use of the 
next-generation experimental facilities we describe, for 
purposes ranging from structured undergraduate 
education to research experiments with order-of-
magnitude increases in complexity over those possible 
today.  

Our work is embodied in extensions to the DETER 
testbed, a large Emulab[2]-derived facility sited at ISI 
and UC Berkeley and targeted to support cyber-
security research. DETER’s existing, successful 
capabilities and community, together with our long 
involvement in its design, operation, and ongoing 
development, provide crucial starting points and create 
unique insights for the work described here.  

2. Risky Experiment Management  
Experimental cybersecurity research is often inherently 
risky. An experiment may involve releasing live 

malware code, operating a real botnet, or creating other 
highly disruptive network conditions. Realistic 
replication of such attacks is necessary to thoroughly 
test detection and defense mechanisms.  

The common response to this risk is to implement 
strict isolation capabilities within a testbed, in an 
attempt to ensure that no actual damage will be caused 
by an experiment. Depending on the testbed, 
containment mechanisms may range from complete 
disconnection from the outside world to allowing 
narrowly-controlled console access, and include disk 
scrubbing before and after each experiment. 

But such containment itself is highly limiting. A fully 
contained experiment is hard to observe, hard to 
establish, and hard to control, because it must be 
completely isolated from its environment. Similarly, 
full containment is hard to create with any assurance. 
Sneak paths, equipment failures, and design mistakes 
can render containment ineffective in myriad 
unexpected ways. 

Most importantly, full containment is not very useful. 
An interesting and powerful class of experiments are 
those that can interact with the larger environment (i.e., 
touch the Internet), but only in carefully controlled and 
well understood ways. Thus, our work aims to move 
from risky experiment containment to risky experiment 
management as a strategy. 

2.1 Risky Experiment Management: Concepts 
Our approach to risky experiment management is 
based on a very simple line of reasoning:  

• If the behavior of an experiment is completely 
unconstrained, the behavior of the host testbed 
must be completely constraining, because it can 
assume nothing about the experiment. 

• But, if the behavior of the experiment is 
constrained in some particular and well-chosen 
way or ways, the behavior of the testbed can be 
less constraining, because the combination of 
experiment and testbed constraints together can 
provide the required overall assurance of safe 
behavior. 

We call constraints on experiment behavior “T1 
constraints”, while the corresponding constraints on 
testbed behavior are called “T2 constraints”. 

The composition of T1 and T2 constraints determines 
the overall safety goal for the testbed. This testbed 
safety goal is a fixed property, defined by the 
operational and administrative parameters of a 
particular testbed. While the safety goals of each 
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testbed will have a common flavor of “no harm to 
other users, the testbed or the Internet,” each testbed 
may define notions of harm differently. Unacceptable 
behaviors may depend on the testbed’s mission and the 
policies at the hosting institutions. Testbed goals must 
thus be explicitly defined in detail. 

Three points should be noted. First, the separate 
expression of T1 and T2 constraints in this model 
represents a separation of concerns. This separation 
allows experiment and testbed constraints to be framed 
and expressed independently and in terms directly 
meaningful to their audiences, experimenters and 
testbed designers, respectively. Explicit experiment 
(T1) constraints will allow an experimenter to reason 
about which constraints are acceptable without 
affecting the validity of the experiment. Similarly, a 
testbed designer can reason about how to offer 
different T2 constraint environments as well-known, 
robust, and documented services, rather than having to 
separately determine an operating procedure for each 
new experiment.  

Second, we note that the semantics of T1 and T2 
constraint composition to obtain a desired overall 
safety goal is interesting and rich. As an oversimplified 
thought example, one might imagine a worm that can 
only propagate by first contacting a “propagation 
service” (T1 constraint), composed with a testbed 
firewall  (T2 constraint) that allows access to this 
service only from within the testbed. The result is to 
limit the worm’s propagation to the defined bounds of 
the experiment.  

Finally, T1 constraints might be enforced by (1) 
explicit modification of malware to constrain its 
behavior,  (2) implicit constraints using encapsulation, 
or (3) simply asserting a constrained behavior that the 
network can verify. 

Constraints are associated with each experiment within 
a project and are continuously active. Because a given 
experimental topology can be used for multiple 
different “runs” [5], ideally constraints would be 
generated and applied for each run. This however 
would increase the burden for users whose runs exhibit 
the same risky behavior, and it is also challenging 
because we lack means to detect different “runs” from 
within the testbed. Instead, we can associate constraints 
with experiments, but will provide mechanisms for 
users to modify these constraints while the experiment 
is active.  

The T1/T2 concept is only useful if we can ensure that 
the selected T1 and T2 constraints are met. We must 
require that all experiment constraints either be shown 
to be “correct by construction” or be auditable by the 

testbed. Our approach to auditing is to use the 
Experiment Health Management infrastructure 
described in Section 3 to implement monitoring tools 
that verify each constraint throughout the experiment’s 
lifetime. When experiment constraints are violated, the 
Experiment Health Management infrastructure will 
take corrective actions that may range from emailing 
the user and testbed operators to terminating the 
experiment.  

2.2 Framework  
Our current objectives are to 1) develop a set of T1/T2 
constraint sets targeting both practical usefulness to the 
community and advancement of our understanding of 
the T1/T2 risk management model; 2) develop and 
deploy necessary mechanisms and tools to implement 
this risky experiment management model in the 
DETER facility; and 3) evaluate the success of our 
work through interactions with current DETER users 
and others in the research and education community.  

To accomplish these objectives we are developing a 
risky experiment management framework. Our 
framework addresses the following top-level concerns: 
the experimenter’s research goals, testbed safety goals, 
and experimenter privacy goals. We identify useful 
points in each of these spaces, and develop candidate 
sets of experiment (T1) and testbed (T2) constraints 
that together provide these useful behaviors. Presently, 
we have deployed implementations of a small number 
of selected constraint sets to our early-adopter users. 

Current testbeds assume one liberal set of user privacy 
goals, but this is not realistic since, for example, 
commercial users may have very different privacy 
expectations than academic users. Some monitoring of 
user actions and traffic by the testbed will be necessary 
for several purposes: (1) to support health management 
described in Section 3, (2) to ensure that user 
constraints are implemented correctly, and (3) to 
reduce testbed liability in case of malicious incidents. 

To successfully support risky but controlled 
experiments, our framework must capture user needs. 
We have developed an initial experiment 
categorization taxonomy based on the type of risky 
behaviors necessary to an experiment, such as self-
propagating malware, high-volume traffic, etc. Our 
initial taxonomy defines a small list of categories, 
based on current experimental uses of DETER. We 
expect this list to grow as work progresses, based on 
user input.  

Users are presently required to specify experiment 
categorization, privacy goals and appropriate 
experiment constraints at the time of experiment 
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creation. Testbed constraints are generated based both 
on the specification input by the user, and the testbed 
safety requirements defined once by the testbed 
operators. These constraints are put into action by the 
testbed and our health management infrastructure 
ensures that they are continuously enforced.  

2.3 Implementation  
Our ultimate goal is to develop a fine-grain model for 
T1 and T2 constraints and a formal structure to reason 
about their composition. In current work we adopt a 
simpler approach, as a first practical step towards 
deploying a useful risky experiment management 
capability and as an assessment of the value of the 
concept. We are developing a small selection of 
matching T1/T2 constraint sets, where a) the T1 
constraints are chosen to be appropriate and useful for 
a particular class of experiment; b) the T2 constraints 
are chosen to be implementable and verifiable in a 
particular testbed environment, and c) the composition 
of the chosen T1 and T2 constraints produces an 
acceptable risk management result. We develop a 
mechanism to allow researcher and testbed operator to 
agree on particular sets, implement and enforce both 
experiment and testbed constraints, and thus obtain the 
level of risk management required for the particular 
testbed environment.  

We are developing a domain-specific language 
language called REALM for specification and 
manipulation of T1/T2 constraints as well as 
operational safety objectives. Although it will be 
possible for users to write REALM specifications 
directly, our intent is that REALM be the output and 
interchange language that a variety of tools use to 
capture and manipulate constraint information. 
REALM will be integrated with the SEER toolkit 
described in Section 5, including guided dialogs for 
users. The current version is also integrated with the 
DETER facility’s “Create an Experiment” Web page. 
User input is recorded through these interfaces and 
translated into REALM specifications associated with 
the experiment.  

We regard each experiment as potentially risky until 
proven otherwise. We initially address three types of 
potentially risky behavior: (1) running malware, (2) 
creating disruptive behavior, and (3) requiring 
connectivity with the outside Internet. The first two 
behaviors are intentionally risky, whereas the third 
behavior may be risky by accident, if experimental 
traffic with the outside is misconfigured and overloads 
resources, provokes an external attack on the testbed or 
creates liability.  

To meet the needs of DETER’s current research 
community, we initially address the following risks 
from experiments: (1) malware traffic may infect 
testbed hardware infrastructure needed for correct 
operation, (2) experimental traffic of any sort may 
overload control plane and shared hardware, (3) 
disruptive actions may affect control plane and shared 
hardware (4) in experiments with the outside 
connectivity, experimental traffic sent to remote 
machines may infect, overload or disrupt these 
machines and remote networks, (5) in experiments 
with the outside connectivity, experimental traffic may 
provoke retribution toward the testbed (e.g., from the 
Storm Network [44]) or create liability problems to the 
testbed, (6) malware may stay resident on machines 
after they are reclaimed by the testbed and may affect 
future experiments by other users. Our framework is 
evolvable so new threats will be incorporated as 
research objectives dictate; we expect this list of risks 
to grow as we proceed with our work.  

The above risks are contained via experiment and 
testbed constraints. Our initial list of experiment (T1) 
constraints includes: (1) users limit scanning behavior 
of self-propagating malware, (2) users limit targets of 
disruptive actions, such as denial-of-service, to 
addresses within experimental network, (3) users limit 
their malware choice to well-known malware 
contained in the DETER-supplied library, (4) users 
limit experimental connectivity with the outside world 
to a set of machines under their control, and to specific 
protocols, (5) users limit the rate of traffic in their 
experiments, (6) users limit experimental traffic to the 
experimental network, (7) users implement signatures 
or self-terminating behavior in malware they plan to 
use. Our current prototype of risky experiment 
management supports definition of constraints 1-6. 

Our initial list of testbed (T2) constraints includes: (1) 
isolation of experiments on the control plane using a 
separate virtual LAN for each experiment, (2) 
experimental traffic filtering and rate-limiting on the 
control plane using hardware-specific filters at 
switches to prevent disruption and overload of shared 
infrastructure, (3) allowing outside connectivity only 
via specialized nodes (“tunnel nodes”) that connect the 
experimental network to the Internet, (4) controlling 
experimental traffic contents and rate with the outside 
Internet via firewall rules and the Bro intrusion 
detection system [50] for deep packet inspection, both 
installed on all paths to the Internet, (5) recording 
traffic on tunnel nodes, recording of login activity on 
experimental nodes, and association of traffic, logged 
users, and experiment names for potential liability 
reasons. Constraints 1 and 3 are implemented in our 
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current prototype system, with others to be added in 
the near future. 

3. Experiment Health Management  
Experiment health management addresses two broad 
and increasingly important needs within experimental 
cybersecurity research. First is the need to support 
order of magnitude greater complexity in the creation 
of realistic cybersecurity experiments. Second is the 
need to bring greater rigor and scientific discipline to 
the experimental research paradigm. We address these 
needs through a research facility subsystem based on 
two observations: 

• The validity, accuracy, and usefulness of an 
experiment depend critically on some set of 
invariants or expectations identified by the 
experiment’s creator being met.  

• Any given experiment will have a number of other 
behaviors that are not invariants, and cannot be 
predicted by researchers, since experiments are 
done to study unknown effects. 

The rigor and scientific validity of an experiment is 
greatly increased when the expectations and invariants 
on which its validity depends are clearly understood by 
the researcher and by others who wish to utilize or 
build on the results of the experiment.  A system that 
makes these expectations explicit and ensures that they 
are met during an experiment will contribute greatly to 
the rigor of future experimental research. 

This problem is complicated when experimental 
complexity is increased, because the maintenance of 
experimental invariants and expectations becomes 
exponentially more difficult. Managing the complexity 
of experiments that involve more than a handful of 
elements demands system support to assist researchers 
in understanding, documenting, and maintaining the 
health of their experiments – the validity of the 
experiment’s assumptions, expectations, and 
invariants.  

The challenge of experiment health monitoring and 
management is to ensure that the underlying conditions 
and invariants required for an experiment to be valid 
are being met by the facility, and to aid the researcher 
in detecting and modifying errors in experiment 
design. Here “health” refers both to the behavior 
desired by a researcher of his experiment and that 
desired of the underlying testbed. Reasons for reduced 
health include, but are not limited to, mistakes by the 
experimenter, failures or faults of testbed resources, 
misunderstandings the researcher has about the testbed, 
unintended interactions between simultaneous 

experiments, a security constraint being violated, and 
so forth. The initial DETER system, as with many 
similar testbed environments [2][7][12], provided little 
or no support for either determining whether an 
experiment is behaving as expected (its current health) 
or for diagnosing failures and improving the situation 
(improving its health). Our experiment health 
management system addresses this missing function. 

The experiment health problem is characterized by 
three key properties. First, in contrast with the 
“network management” problem of maintaining 
functional behavior in an operating network, our 
domain is the very different problem of supporting 
security-related experimentation on a networking 
testbed. The consequence is that potential range of 
expected behaviors is very broad must be user-
supplied, because many cybersecurity experiments 
require and intentionally create worst-case conditions 
of overload, resource denial, host penetration and 
unreliability. 

Second, expectations of behavior will range from 
extremely low level and concrete “invariants” valuable 
for educational exercises (such as “node A is up”) to 
composite, complex, perhaps statistical, and much 
more abstract expectations (such as “service has been 
denied”). An ideal experiment health system will 
handle this wide range of invariants. 

Finally, usability is critical. It must be possible for 
users to capture desired invariants and health 
enforcement actions with minimal overhead and 
maximum clarity if the system is to meet its objectives. 

Our goal is to support, with these properties, 
experiment health maintenance in testbeds such as 
DETER, and, by extension, to the federation of such 
testbeds as described in Section 4. Our experiment 
health system includes five elements, each with its own 
research and implementation challenges. We outline 
the elements here and expand on each in the following 
sections. The system includes functions to support: 

• Expectation capture. Concerns are the sources and 
expression of data about experiment expectations. 

• Data collection and monitoring. Concerns are 
kinds and sources of data, reasons that the 
information may be incomplete, and how to 
provide controlled sharing between these tools and 
health evaluators . 

• Health evaluators. This includes observation of 
collected data and its comparison against an 
expectation to evaluate if the expectation is being 
met.  
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• Enforcement or repair. In its most basic form, 
enforcement may simply involve repair or 
replacement, but because expectations may be 
quite abstract, there may be several diagnostic 
steps involved in the process, and a selection of 
repair or enforcement options.  

• Support for sharing of information and expectation 
data. This problem has two aspects: an information 
plane to manage the availability and sharing of 
operating information between experiments and 
the underlying testbed, and a library for 
cataloguing and accessing expectation templates, 
resource definitions, data collection tools, current 
performance tools and health evaluators. 

3.1. Expectations  
In operating networks, network management has the 
goal of maintaining connectivity, distributing load, 
setting up network configuration, and in general 
supporting the network mission of delivering traffic 
effectively between end nodes. This common mission 
is well understood and agreed upon by all participants. 
In shared testbeds, management needs to achieve a 
more complex definition of a desired behavior. For a 
particular user, desired behavior may be to deny 
service or disrupt connectivity in the experimental 
network, to test a new worm or to maintain some long-
lived service running reliably. 

Users also have goals related to research privacy and 
the usability they expect from the testbed, and these 
goals differ from person to person. From the testbed 
operator’s perspective, the desired behavior may be to 
provide reliable service to users, to control risky 
experiments, to federate with remote testbeds and to 
protect the privacy of its users. 

Because desired behaviors differ widely across 
different experiments and depend on the nature of 
experimentation and testbed maintenance, it is 
impossible to identify universally appropriate 
behaviors. Instead we require an explicit expression of 
individual experiment expectations. The two key issues 
we address are sources of expectations and the 
language for codifying them.  

Expectations may be identified in a variety of ways. 
First, they could come directly from the experimenter. 
This could be explicit, or inferred from the researcher's 
behavior ("if he keeps fixing the DNS system when it 
breaks, it must mean the DNS system should be 
working"). Ideally a system could simply learn 
invariants by looking at a working experiment, but the 
problem lies in recognizing the non-invariants - things 

that are unimportant or should change from experiment 
to experiment.  

Our initial implementation requires explicit expression 
of expectations by experimenters and testbed system 
managers, with minor automation from the testbed. We 
include design hooks for the system to use additional 
expectation capture methods in the future. We 
implement an expectation capture language that 
specifies a set of conditions under which the 
expectation will be evaluated, a subject for the 
evaluation, a health evaluator, and a set of responses to 
the evaluation. Together these items capture an 
expectation and its enforcement and response methods. 

A simple example is to expect a server to be running, 
verify this by sending a ping once a minute and reboot 
the server if the ping fails. In a more sophisticated 
example, the expectation may be of a certain level of 
traffic among a set of gossiping nodes. The traffic level 
might be checked every minute and if it is below a 
threshold, each node might be told to increment by one 
the number of nodes it contacts during a gossiping 
episode. A security expectation might lead to allowing 
a traffic flow from the Internet into an experiment 
(response), if a particular experiment is running, no 
other experiments are running, and the traffic is all 
addressed to a particular port (conditions). 

We identify a long list of requirements for 
expressiveness in invariant capture, including but not 
limited to: time, location, service quality evaluation; 
verification of particular actions, continuous states, 
privacy; higher-level concepts such as restriction on 
code propagation; dependencies among expectations, 
coupling of expectations to actions; and composition 
into higher level expectations. To create the capture 
language, we build on past work such as Ponder [30] 
and Tcl expect [28], with a domain-specific user-
friendly and higher-level syntax, for easier use.  

We briefly discuss key issues with respect to the 
expectation subjects – things about which an 
expectation may be expressed. These subjects range 
from simple base level instances, such as a link or 
node, to more complex elements such as an entire 
Gnutella-like P2P system. We differentiate between the 
type of the subject (e.g., link), and the instantiation of 
it (e.g., link between A and B). The choice of health 
evaluation tools and repair functions then depends both 
on the type and the instantiation of a given expectation, 
and may lead to decomposition of that expectation 
evaluation into more primitive evaluations. To capture 
these nuances we provide parameterized templates for 
many common expectations in our library, for users to 
instantiate. 



 7 

3.2. Data collection tools  
To implement health evaluation the system provides 
monitoring and data collection about what is happening 
in the testbed as a whole as well as in each particular 
experiment. There are three key sources of such data: 
(1) static data such as node allocation to a particular 
experiment, etc. (2) data collected routinely in all 
experiments and by the facility itself, such as packet 
tracing, node liveness, etc., and (3) explicit data 
collection requested by an experimenter or the testbed 
management, in context of a specific expectation’s 
evaluation. 

There are several challenges to data collection. First, 
because of scale and system unreliability, available 
data may be incomplete. Second, the desired 
information may not be directly measurable, but must 
be inferred from other measurements that can be 
gathered directly. Finally, in light of security 
expectations that relate to privacy, some information 
may not be accessible to a particular experimenter or 
portion of an experiment. Either an experiment or the 
testbed system may withhold information from the 
other. As an initial step towards meeting these 
challenges, we provide a base set of data collection 
tools in our library, which will be extensible by 
researchers.  

3.3. Health evaluation  
The job of health evaluation is to determine whether an 
expectation – in our framing, the static or dynamic 
behavior of a expectation’s subject – meets specified 
health criteria. There are two aspects to evaluating the 
health of a subject. The first is to select the particular 
behaviors of the subject, such as link bandwidth, jitter 
or loss rate, that are to be evaluated. This will in turn 
determine one or more tools for evaluating the 
behavior. The second is to determine the health of that 
subject by comparing observed and expected behavior. 
As a simple example, the experiment health may 
require either a high or a low loss rate, depending on 
the user’s desires.  

In the case of a more complex subject, with a rich set 
of possible behaviors and the potential for a complex 
user definition of health, we break the problem down 
with a composite evaluation. One approach is to define 
the more complex behavior as a composition of a set of 
simpler behaviors. Then when asked to evaluate the 
health of the subject, the target behavior is computed 
as a composition of those simpler behaviors and the 
result is evaluated for its health. In this approach the 
composite behavior is completely synthesized and then 
a single health evaluation is performed.  

In an alternate approach, we define the health 
evaluation of a complex subject as the composition of 
the health evaluations of simpler components. In this 
case, the system evaluates the behavior and health of 
each simpler component and then composes the results 
into a single health evaluation. Because each approach 
is preferable in different circumstances, we define both 
approaches and allow the user to reason about 
tradeoffs.  

3.4. Enforcement and repair  
Enforcement and repair are two sides of the same coin. 
Enforcement provides some level of guarantee that an 
expectation continues to be met. Thus, for example, in 
order to enforce that any reproducing malware does not 
overload resources, the testbed could rate limit the 
traffic from experimental nodes. Enforcement is likely 
to require frequent periodic evaluation of expectations. 
In contrast, repair uses similar mechanisms but aims to 
correct a detected failure. Since failures are not very 
frequent, evaluation of expectations that involve repair 
actions may occur on demand or periodically but 
infrequently. 

A third alternative is to detect an unhealthy situation, 
but take no action to address it other than notifying the 
user. This may be necessary in cases when there is no 
specified repair action, or the repair itself has failed. 
For example if an experiment expects 50 nodes, is 
assigned the only 50 nodes available and one fails, the 
only option is to halt the experiment. On the other 
hand, if some nodes were optional and some critical, 
the experiment might continue as long as a critical 
node did not fail. 

We allow the user to specify each of these cases, and 
the desired enforcement or repair action, using our 
expectation language. We provide tools for common 
enforcement and repair operations in our library for 
easy use. Additional language constructs support 
sophisticated users that wish to provide enforcement or 
repair actions that are specialized to the nature of their 
experiment.  

3.5. Sharing  
To monitor and enforce expectations, a health system 
must depend on significant amounts of information 
about  experiment performance. Because DETER and 
similar testbeds utilize reusable and shared resources, 
this information must be collected and accessible from 
several contexts simultaneously. Conversely, the same 
information may be valuable to more than one 
monitoring tool either simultaneously or at different 
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times. Each of these situations leads to information 
sharing. 

For example, it may be important to collect packet 
traces in an experiment for a variety of different uses. 
Monitoring tools used on behalf of the experimenter 
may depend on these traces to verify correct 
experiment behavior, while the underlying testbed 
system may simultaneously use such traffic 
information to determine the health of the complete set 
of resources it is managing. At the same time, these 
traffic traces can provide an audit trail if an experiment 
creates a security risk for the testbed, e.g., by running a 
worm that escapes into the Internet. Other contexts for 
reuse of the same information are possible. 

Thus information should be collected once and 
managed effectively to allow for multiple uses. This 
requires a common information substrate or 
information plane, with well-defined access rules and 
contexts. Information collection and access must be 
designed to reflect the security and privacy 
expectations that are critical for the whole experiment 
health management. In this area our development effort 
draws on and is synergistic with other efforts with this 
specific focus, particularly the Knowledge Plane 
activity described in [18]. 

4. Dynamic Federation  
Federation is the task of creating, on demand, a multi-
testbed structure to support a single large experiment. 
The goal of federation is to subdivide and embed a 
single experiment across multiple testbeds, in a way 
that meets the objectives, requirements and constraints 
of both the researcher and the testbed operators. 
Reasons to federate experiments include scale and 
realism, access to heterogeneous testbed capabilities, 
integration of multiple research communities, and 
information hiding. Of particular interest for large 
cybersecurity experiments is simultaneously creating 
federated environments while addressing risky 
experiment management and health management goals 
based on the mechanisms of Sections 2 and 3. 

The DETER federation architecture (DFA) 
implements federation over Emulab-style testbeds. The 
architecture breaks the federation task into three steps: 
1) decomposing the experiment to be federated into 
sub-experiments to be assigned to individual testbeds; 
2) embedding the sub-experiments into individual 
testbeds and building the necessary connections 
between testbeds, and 3) operating and supporting the 
federated experiment. 

The architecture recognizes that within the three tasks 
some functions are dependent on the requirements and 

characteristics of the particular experiment to be 
federated, and thus require domain-specific knowledge. 
Other functions are common across experiments, and 
can be modularized and generalized. The DFA 
accommodates this by including 1) elements and 
interfaces to support common functions; 2) system 
interfaces and framework for a “plug-in” extensible 
implementation of domain-specific functions; and 3) 
an ontology and language to express information used 
to drive the federation process. Figure 1 gives an 
overview of the architecture. Key elements are 
described in the following text. 

 

4.1. Sub-Experiment Decomposition  
Intelligent decomposition of a single large experiment 
into per-testbed sub-experiments must of necessity 
consider two factors: heterogeneity within the 
experiment in one or more dimensions, and testbed 
capabilities along one or more axes. Examples of 
experiment heterogeneity that may influence 
decomposition include  

• Topology and bandwidth requirements – e.g. 
embedding densely connected regions of the 
experiment within a single testbed.  

• Specific hardware or software requirements within 
some portion of the experiment graph.  

• Security constraints – in our model, specific T1 
constraints that can be offered over some portion 
of an experiment, and/or specific T2 constraints 
required from the testbed hosting some portion of 
the experiment.  

• Information hiding – particularly in a composite 
experiment, such as a red-team/blue-team 
scenario.  

Because the factors that should influence the 
decomposition of a particular experiment are known 
only to the experimenter, decomposition is a domain 
specific function. Thus, the DFA provides for an 
extensible set of decompositors, together with a well-
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defined environment for their implementation. DFA 
provides common information to decompositors using 
the ontology described in Section 4.3. Inputs or 
knowledge specific to a single decompositor may be 
provided by a custom interface, or simply programmed 
into the decompositor’s implementation. As a 
particularly simple case, the decomposition function 
can be performed without involvement of higher level 
software by a human writing directly in the CEDL 
language described below.  

4.2. Canonical Experiment Description 
Language and Federator  

Canonical experiment description language (CEDL) is 
the output language for all decompositors in the DFA. 
It can be thought of as an “assembly language” for 
federated experiments – a common, low-level format 
that many different tools can generate. CEDL is an 
extension of Emulab’s current NS2-based experiment 
description language. CEDL describes an experiment 
as an interconnected topology of nodes, together with a 
number of annotations that guide the embedding of an 
experiment into its federation of testbeds. Annotations 
include such information as the target testbed for 
placing a particular node, and whether a node is critical 
to the experiment or can be ignored if it cannot be 
embedded successfully.  

An experiment’s CEDL description forms the input to 
the federator. The federator is responsible for 
embedding the sub-experiments within each federated 
testbed, after creating the additional hidden nodes and 
links necessary to interconnect regions of the 
experiment. This task is essentially mechanical, but 
requires parsing and understanding the CEDL 
description sufficiently to forward experiment 
information, security configuration, and user 
credentials to testbeds, establish the shared experiment 
support environment of Section 4.4, handle error 
conditions that may arise, and similar functions.  

4.3. Federation Resource Description 
Ontology  

Elements of the DETER federation architecture are 
bound together by an ontology of information needed 
to carry out the federation task. This ontology, and its 
expression in a concrete format, allow the different 
principals to communicate requirements, needs, and 
constraints to each other. Statements and requests 
expressed in this ontology are communicated between 
testbeds, the DFA federator, and decompositors acting 
on behalf of potential users, to implement 
decomposition and embedding functions. We briefly 

outline the structure and scope of the proposed 
ontology.  

The form of expression is attribute/value assertions 
potentially attested to by principals or outsiders: (X 
asserts that Y is/has Z). Some example attributes, 
values, and meanings are shown in the table. 

Multiple attribute assertions can be assembled into 
descriptions or requests. The operators are grouping, 
conjunction, and inclusive and exclusive disjunction.  

(DETER asserts that its access policy is X.509 
certificate AND 

 (DETER asserts that it has 100 nodes AND DETER 
asserts that it has 1Gb/s cross-connect) XOR 

 (DETER asserts that it has 1000 nodes AND DETER 
asserts that it has 1000Mb/s cross-connect))  

The ontology’s domain of discourse is testbeds, 
experimenters, resources, sub-experiments, and 
attesters. Examples of representable concepts within 
the ontology are given below, for flavor. Of particular 
interest is the ontology’s ability and requirement to 
represent our T1/T2 risky experiment management 
constraints. It follows that the ontology will evolve in 
this respect as our work in that area proceeds.  

The simple semantic model of this ontology is intended 
to allow the use of a variety of existing representation 
and constraint matching tools to facilitate reasoning 
about the federation problem. Our research lies in what 
must be said and how to interpret it, not in the form of 
the ontology.  

4.4. Scaling the Experiment Support 
Environment  

Centralized testbeds such as Emulab have historically 
provided a rich experiment support environment of 
functions intended to simplify the job of the researcher 
by providing useful building-block capabilities. 
Emulab’s experiment support environment includes a 
shared filesystem, an event system, a simple error 
management system, and several related functions. 
When moving to a decentralized, federated 
environment, the scalability and appropriateness of 

Attribute Value  Meaning  

User: PGP_Key  (keyid, 
server)  User PGP ID  

Testbed: 
Access_Policy  

X.509, 
Kerberos  

Acceptable user 
authentications  

Sub_Experiment: 
T1_Imposed  String  

T1 constraint set 
exp. meets  
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these functions must be revisited. Several outcomes are 
possible.  

The function may be fully scalable, perhaps with a new 
implementation, as it is commonly used. The function 
may be scalable as defined, but not as commonly used, 
leading to the need for careful re-thinking. Or, the 
function may not be scalable at all, leading to its 
removal from the federated environment, and possible 
replacement with a more scalable alternative 
capability.  

Different Emulab support functions exhibit each of 
these properties. As examples,  

• The use of a shared filesystem is reasonably 
scalable in concept, if not always in 
implementation. A number of researchers have 
proposed approaches to highly scalable distributed 
filesystems that could be adopted.  

• The Emulab event system is scalable in concept, 
because it does not define either tight real-time 
semantics or assured ordering semantics. 
However, in practice it exhibits both of these 
properties in a local testbed, and they have come 
to be relied on by some experimenters. In a 
federated environment, two separate mechanisms 
may be appropriate: one that provides tight real-
time constraints on single event delivery, to 
coordinate the actions of different elements across 
a highly scaled experiment, and one that provides 
explicit ordering semantics [42][43] to support 
complex dependency graphs in highly structured 
experiments. 

In general, the design of an experiment support 
environment for large federated facilities must 
carefully and explicitly consider tradeoffs between 
scalability, robustness, implementability, and 
usefulness to the experimenter. In our implementation 
of DFA within DETER, each of the existing Emulab 
services is analyzed for suitability to the federated 
environment, and updated or replaced if necessary. 

5. SEER as Integration Platform and 
Usability Framework  

The DETER testbed’s SEER system [1] is an 
extensible framework for experiment support and 
control. We rely on SEER to provide broad 
infrastructural support for our new capabilities of 
experiment health maintenance, risky experiment 
management, and federation.2 It is important to 
                                                             
2 We note that it is not necessary to use SEER to access these 
capabilities; each is also accessible through new low-level system 

recognize that without significant advances in this 
regard, the increased experiment complexity enabled 
by our other advances could potentially reduce testbed 
usability. For this reason, our goal is to leapfrog 
existing usability models, creating new experiment 
creation and control interfaces that directly address this 
increased complexity. Further, it is useful to address 
separately the needs of sophisticated experimenters, 
who frequently must operate at low level and shape 
their own tools, and for more casual users, who need 
simple access to complex function.  

SEER is structured as a GUI that communicates with a 
master controller agent (CA) for each experiment. In 
turn, the controller agent communicates with and 
controls a SEER agent running on each experimental 
node. The GUI and CA provide the experimenter with 
access to SEER capabilities through an XML-RPC 
interface, which allows for interaction with the 
controller by other programs. For example, even now 
an experimenter can interact with the controller 
through a command-line interface. The controller agent 
contains logic in the form of execution scripts to 
support potential experimenter requests, as well as the 
event state necessary to monitor and manage those 
requests. The controller agent communicates directly 
with the local node agents with requests or commands 
for local operations and information. This structure 
provides a framework to support the major functional 
developments described in this paper. We briefly 
consider each of these in the context of the SEER agent 
system.  

As described in Section 4, federation of testbeds in 
support of large experiments is achieved by 
decomposition of the experiment into partitions, each 
of which is run on one of the federants under its local 
control. We reflect that same decomposition in the 
SEER experiment control, by splitting and distributed 
the responsibilities of the controller. Under federation, 
we extend SEER to provide a single experiment 
controller, a set of federant controllers, and the 
requisite node agent for each node. In this case, the 
experiment controller provides high-level oversight 
and partitioning of the SEER activities, and is capable 
of partitioning inferior responsibilities to the federant 
controllers, which in turn interact with the local node 
agents. The experiment controller operates using an 
experiment-wide event stream, while the individual 
federant controllers each have their own, partitioned, 
event state and sequence of events. Notice that this is 
an example of a situation in which the invoker of an 
                                                                                              
APIs. It is both possible and expected that additional higher level 
integration tools will be developed in the future. 
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XML-RPC on a (federant) controller will be another 
controller, not the GUI – a new capability that is 
naturally supported by the modular SEER architecture. 
With further extensions expected in the longer run, we 
plan for other situations in which controllers will be 
invoked by something other than the GUI.  

In the case of risky experiment management the 
challenge is slightly different, but is equally 
accommodated with an extension to the underlying 
agent system. The problem for risky experiments is 
that the interaction with the outside Internet is not 
based in a “node” of the experiment in the same sense 
as the traffic and actions of a completely internal 
experiment. Therefore, in order to manage and monitor 
that interaction, a T2 agent is used to manage the 
testbed’s constraint mechanisms. In terms of overall 
control of the experiment, this agent is a peer of the 
node agents. Concretely, this agent is hosted on the 
same node as the federant’s controller. The job of this 
T2 agent is qualitatively different than that of the node 
agents because it may have less control over what 
actually happens, but may require more control over 
the flow or distribution of information from its “target” 
to the other components of the experiment. By 
isolating that control in a separate agent, we increase 
our ability to make it trustworthy, independently of the 
other components of the SEER environment.  

Our experiment health management architecture maps 
directly onto the appropriate SEER agent infrastructure 
for each experiment. By piggy-backing experiment 
health management monitoring agents onto the existing 
SEER agent structure, we guarantee that the 
appropriate data collection, behavior evaluation, health 
determination, and responses will be managed along 
exactly the same paths of control as those of the 
experiment itself. This also allows for policy controls, 
such as those that may be necessary in the information 
plane component of the health management system, to 
follow the structure cleanly, giving each node agent, 
federant controller, or T2 agent local control over local 
access. Finally, we extend the SEER GUI itself to 
provide access to these new capabilities in intuitive 
ways.  

6. Related Work  
Our experiment health work is an extension and 
customization of knowledge plane [18] ideas to 
network testbeds. Much recent work in this area has 
concentrated on the sub-problem of supporting an 
information plane. Two approaches are seen. With 
Sophia [34] and the work of Loo et al.  [35][36][37], 
the objective is to provide an all-purpose information 
plane, in which all information is shared. From our 

perspective these do not provide the ability to control 
or limit access to information based on security and 
privacy policies. The second is more specialized 
information planes, including iPlane [38], which 
provides path behaviors for managing peer-to-peer 
overlays, the Lord of the Links project [39] which 
provides comprehensive network topology 
information, and the 4D proposal [40] for route 
computation and distribution. In contrast we propose a 
general-purpose information plane for sharing, but one 
that permits control or limitation of access to 
information for policy (proprietary or security) reasons.  

There is vast work in network management; a field that 
is related to our health management effort. The main 
distinction between network management and our 
work is that testbed experiments lack generally agreed-
upon correctness or performance goals. Namely, what 
may be regarded as poor performance in one 
experiment, such as frequent link failures, may be a 
desired effect in another experiment. Another 
difference lies in the granularity at which management 
is done: networks are managed at high granularity of 
network elements and links, while experiments also 
need to be managed at low granularity of user actions. 
Thus, we expect to reuse existing work in network 
management for coarse-granularity management of the 
testbed and the experiments, but we extend this field 
with our fine-granularity management functionalities.  

Network monitoring has received significant attention 
with the advent of grid and cloud computing (to 
mention just a few publications [14][15][16][31]). We 
plan to reuse existing monitoring approaches and tools 
for our health management. The novelty of our work 
lies in interpretation of the outputs of those tools, and 
in orchestration of their activity.  

Ballani and Francis propose Complexity Oblivious 
Network Management [17], in which the management 
interface abstracts much of the underlying 
implementation complexity, facilitating more effective 
high-level management. We expect to leverage and 
extend this work to simplify our management tasks.  

There are a number of tools for distributed application 
management on PlanetLab [12], such as Plush and 
Nebula [4], PlMan [19], Stork [20], pShell [21], 
Planetlab Application Manager [22], parallel open SSH 
tools [23], plDist [24], Nixes [25], PLDeploy [26] and 
vxargs [27]. With the exception of Plush and Nebula, 
these tools are all low-level monitoring or management 
tools that are engaged manually at the setup time of a 
PlanetLab experiment. They enable parallel execution 
of multiple tasks, or monitor nodes for liveness, 
connectivity, and state, and present summarized 
information to a user. Plush [4] is a toolkit for 
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distributed application configuration, management and 
visualization. Plush enables users to specify tasks in 
XML format, then executes them invoking low-level 
process, file and resource monitoring to detect failures. 
Plush also provides synchronization primitives and 
performs resource acquisition and reallocation as 
needed. The primary distinction between Plush and our 
proposed health monitoring is that Plush manages for 
known performance goals (connectivity, process 
liveness, etc.) that are suitable for continuously running 
applications, while we additionally manage for 
customizable performance goals that are suitable for 
widely varying testbed experiments. Our management 
thus includes the notion of “expected performance” 
and covers a wider range of behaviors than Plush.  

Emulab’s Experimenters Workbench [5] contains 
support for experiment versioning, cloning via a 
template, and archiving. These capabilities support pre-
packaged experiments, and are complementary to the 
capabilities provided by SEER. Emulab’s workbench 
does not, however, provide any support for experiment 
creation and correctness checking, which is the main 
focus of our health management infrastructure.  

In the area of expectation or policy specification 
languages, we mention two extremes. XACML [29] is 
declarative and serves as a policy capture framework, 
expecting enforcement through other means. From our 
perspective, policy declarations are only a small part of 
our challenge. In contrast, Ponder [30] [41] is an object 
based language for declaring not only security and 
management policies, but time, state, and composite 
conditions under which the policies should be 
evaluated, sets of subjects to be evaluated, sets of 
targets over which some action might be taken, and the 
actions themselves. All of these can be individuals, 
composites, or abstractions. In fact, Ponder policies are 
also objects and can themselves be the subjects of 
policies. Simpler than Ponder, Tcl Expect [28] is a 
scripting environment whose syntax enables 
specification of control flows that depend on controlled 
program outputs, thus automating system testing. As 
discussed earlier, our expectation language 
incorporates such capabilities, with the specific 
objective of making expectation capture easily 
accessible, usable, and understandable by a broad set 
of differently skilled researchers. We find it useful to 
reuse features of Tcl Expect and Ponder, wrapping 
them in more user-friendly syntax and/or higher level 
language constructs.  

Though there has been much work on federating 
databases or constructing meta-computers, federating 
testbeds is a relatively recent area of research. Emulab-
to-Emulab federation remains a topic of ongoing 

development [51][52][53], though much of this is the 
foundational work of interconnecting the testbeds at 
the operational level. Our work extends this to enable 
experiments that configure the federated environment 
based on policy considerations such as the risk level of 
the experiment, and to include distributed monitoring 
capability. The PlanetLab research community has also 
begun to federate instantiations of PlanetLab [54][55]. 
Much of this work centers on splitting a centralized 
authority between a few entities; our work is more 
focused on federation without a central authority. The 
Grid community provides both tools [56] and standards 
[57][58][59][60] that are useful in addressing several 
aspects of federation. Primarily, Grid tools simplify 
exchange of authentication requirements and trust 
requirements, which are required in a practical 
federation system but are not central to our research. 
Adopting these standards and tools frees us to focus on 
the new aspects of our problem domain.  

Honeynets [32] address a problem related to our risky 
experiment control. Honeynets must allow some 
malware interaction with the outside Internet, but 
control it so that the honeynet does not participate in 
attacks on others [33]. This resembles our goal of 
allowing experiments to communicate safely with the 
Internet. However our problem is more constrained 
since testbed researchers often have some knowledge 
of the malware they want to study and can describe 
some aspects of its behavior, while honeynets must 
support unknown malware and live attackers. Despite 
these distinctions we find it useful to reuse honeynet 
practices for our testbed constraint implementation. 

7. Conclusion 
From its inception in 2004, the DETER testbed facility 
and community have provided effective, dedicated 
experimental resources and expertise to a broad range 
of academic, industrial and government researchers. 
Now, building on knowledge gained, the DETER 
developers and community are moving beyond the 
classic “testbed” model and towards the creation and 
deployment of fundamentally transformational 
cybersecurity research methodologies. The risky 
experiment management, experiment health support, 
and federation technologies described in this paper 
simultaneously enable order of magnitude increases in 
both scientific rigor and realism for such research, 
leading to dramatic increases in researcher productivity 
and quality of results. Further, these DETER advances 
serve as an incubator for similar capabilities in projects 
such as GENI and the proposed National Cyber Range, 
catalyzing dramatic and broad improvement in the 
nation’s cyber research capability.  
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